89 research outputs found

    Ecological processes and large-scale climate relationships in northern coniferous forests

    Get PDF
    Ilmasto vaikuttaa ekologisiin prosesseihin eri tasoilla. Suuren mittakaavan ilmastoprosessit, yhdessÀ ilmakehÀn ja valtamerien kanssa, sÀÀtelevÀt paikallisia sÀÀilmiöitÀ suurilla alueilla (mantereista pallopuoliskoihin). TÀmÀ vÀistöskirja pyrkii selittÀmÀÀn kuinka suuren mittakaavan ilmasto on vaikuttanut tiettyihin ekologisiin prosesseihin pohjoisella havumetsÀalueella. Valitut prosessit olivat puiden vuosilustojen kasvu, metsÀpalojen esiintyminen ja vuoristomÀntykovakuoriaisen aiheuttamat puukuolemat. Suuren mittakaavan ilmaston löydettiin vaikuttaneen nÀiden prosessien esiintymistiheyteen, kestoon ja levinneisyyteen keskeisten sÀÀn muuttujien vÀlityksellÀ hyvin laajoilla alueilla. Tutkituilla prosesseilla oli vahva yhteys laajan mittakaavan ilmastoon. Yhteys on kuitenkin ollut hyvin dynaaminen ja muuttunut 1900-luvulla ilmastonmuutoksen aiheuttaessa muutoksia suuren mittakaavan ja alueellisten ilmastoprosessien vÀlisiin sisÀisiin suhteisiin.Ecological processes are controlled to varying degrees by climate. Large-scale climatic patterns (teleconnections) control the frequency of local weather phenomena over large regions (continents to hemispheres) and at different timescales (days to decades). This Ph.D. aims to explain how large-scale climate patterns synchronize a set of ecological processes northern coniferous forests (tree-ring growth, large area burnt by wildfire, and tree-mortality caused by mountain pine beetle) through controlling the frequency, duration, and spatial correlation of key local weather variables over large areas. Methodology was based on obtaining long complete ecological and climatic records and applying a variety of timeseries analyses in order to find out if climate and populations were related, and the nature and extent of such relationships, within a framework defined by knowledge on both the biological and the physical characteristics of the studied interactions. The description of the mechanisms through which such teleconnections control population traits is essential in these studies. Research on timeseries allowed the development of new methods to deal with highly autocorrelated data. Overall, the studied processes were strongly related with and synchronized by large-scale climate. Mountain ranges played a major role in creating regional climatic gradients and thus strongly influenced relationships between climate and the ecological processes. Moreover, land use (grazing in this case) strongly affected the relationships between ecological processes (tree-growth) and climate. Relationships between climate and ecological processes were found to be highly dynamic and to have changed during the 20th century, driven in part by long-term climatic changes and by internal variability of large-scale climate patterns. Finally, an environmental multi-proxy reconstruction is presented using regional relationships between climate and proxy records

    Sensitivity of global terrestrial ecosystems to climate variability

    Get PDF
    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance1. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations2. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index3, and three climatic variables that drive vegetation productivity4 (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing5. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.acceptedVersio

    A Driftwood-Based Record of Arctic Sea Ice During the Last 500 Years From Northern Svalbard Reveals Sea Ice Dynamics in the Arctic Ocean and Arctic Peripheral Seas

    Get PDF
    We present a 500-year history of naturally felled driftwood incursion to northern Svalbard, directly reflecting regional sea ice conditions and Arctic Ocean circulation. Provenance and age determinations by dendrochronology and wood anatomy provide insights into Arctic Ocean currents and climatic conditions at a fine spatial resolution, as crossdating with reference chronologies from the circum-Arctic boreal forests enables determination of the watershed the driftwood originated from. Sample crossdating may result in a wide range of matches across the pan-boreal region, which may be biased toward regions covered by the reference chronologies. Our study considers alternate approaches to selecting probable origin sites, by weighting scores via reference chronology span and visualizing results through spatiotemporal density plots, as opposed to more basic ranking systems. As our samples come from naturally felled trees (not logged or both), the relative proportions of different provenances are used to infer past ocean current dominance. Our record indicates centennial-to decadal-scale shifts in source regions for driftwood incursion to Svalbard, aligning with Late Holocene high variability and high frequency shifts in the Transpolar Drift and Beaufort Gyre strengths and associated fluctuating climate conditions. Driftwood occurrence and provenance also track the northward ice formation shift in peripheral Arctic seas in the past century. A distinct decrease in driftwood incursion during the last 30 years matches the observed decline in pan-Arctic sea ice extent in recent decades. Our new approach successfully employs driftwood as a proxy for Arctic Ocean surface circulation and sea ice dynamics

    Herbivore-Induced Effects on Arctic Soil Carbon Storage

    Get PDF
    Permafrost degradation and organic matter decomposition in the terrestrial Arctic are strongly depending on soil temperature throughout the year. These temperatures are affected in numerous ways by activity of large herbivorous animals. We identified snow compaction and animal-induced vegetation changes as key elements. Therefore, we analysed soil parameters along transects following grazing intensity in both a permafrost environment (northeastern Siberia) and seasonally frozen ground (norther Finland). Parameters included TOC, C/N ratio, d13C, bulk density and radiocarbon age. While we observed a strong increase in soil carbon storage with high grazing intensity under permafrost conditions, this effect does not show in seasonally frozen ground. However, an obvious animal-induced change in both areas was a shift in vegetation composition and structure, following the grazing gradient. We conclude that material and water fluxes in seasonally frozen ground outweigh the animals’ effects, contrary to permafrost environments, but state that on permafrost, animals could help maintaining low soil temperatures and hence reduce organic material decomposition

    Vegetation composition and shrub extent on the Yukon coast, Canada, are strongly linked to ice-wedge polygon degradation

    Get PDF
    Changing environmental and geomorphological conditions are resulting in vegetation change in ice-wedge polygons in Arctic tundra. However, we do not yet know how microscale vegetation patterns relate to individual environmental and geomorphological parameters. This work aims at examining these relations in polygonal terrain. We analysed composition and cover of vascular plant taxa and surface height, active layer depth, soil temperature, carbon and nitrogen content, pH and electrical conductivity in four polygon mires located on the Yukon coast. We found that vascular plant species composition and cover correlates best with relative surface height. Ridges of low-centred polygons and raised centres of high-centred polygons support the growth of mesic and wetland species (e.g., Betula glandulosa, Salix pulchra, S. reticulata, Rubus chamaemorus, various ericaceous dwarf shrubs, Eriophorum vaginatum, Poa arctica). Wetland and aquatic plant species (e.g., E. angustifolium, Carex aquatilis, C. chordorrhiza, Pedicularis sudetica) grow in low-lying centres of polygons and in troughs between polygons. We also found a relationship between vascular plant species composition and substrate characteristics such as pH, electrical conductivity and total organic carbon, although the individual influence of these parameters could not be determined because of their correlation with relative surface height. Our findings stress the regulatory role of microtopography and substrate in vegetation dynamics of polygonal terrain. Ongoing warming in this region will lead to changes to polygonal terrain through permafrost degradation and subsequent conversion of low-centred into high-centred polygons. Our results indicate that shrubs, particularly Betula glandulosa and heath species, have the potential to expand most

    Large herbivores on permafrost— a pilot study of grazing impacts on permafrost soil carbon storage in northeastern Siberia

    Get PDF
    The risk of carbon emissions from permafrost is linked to an increase in ground temperature and thus in particular to thermal insulation by vegetation, soil layers and snow cover. Ground insulation can be influenced by the presence of large herbivores browsing for food in both winter and summer. In this study, we examine the potential impact of large herbivore presence on the soil carbon storage in a thermokarst landscape in northeastern Siberia. Our aim in this pilot study is to conduct a first analysis on whether intensive large herbivore grazing may slow or even reverse permafrost thaw by affecting thermal insulation through modifying ground cover properties. As permafrost soil temperatures are important for organic matter decomposition, we hypothesize that herbivory disturbances lead to differences in ground-stored carbon. Therefore, we analyzed five sites with a total of three different herbivore grazing intensities on two landscape forms (drained thermokarst basin, Yedoma upland) in Pleistocene Park near Chersky. We measured maximum thaw depth, total organic carbon content, ή13C isotopes, carbon-nitrogen ratios, and sediment grain-size composition as well as ice and water content for each site. We found the thaw depth to be shallower and carbon storage to be higher in intensively grazed areas compared to extensively and non-grazed sites in the same thermokarst basin. First data show that intensive grazing leads to a more stable thermal ground regime and thus to increased carbon storage in the thermokarst deposits and active layer. However, the high carbon content found within the upper 20 cm on intensively grazed sites could also indicate higher carbon input rather than reduced decomposition, which requires further studies including investigations of the hydrology and general ground conditions existing prior to grazing introduction. We explain our findings by intensive animal trampling in winter and vegetation changes, which overcompensate summer ground warming. We conclude that grazing intensity—along with soil substrate and hydrologic conditions—might have a measurable influence on the carbon storage in permafrost soils. Hence the grazing effect should be further investigated for its potential as an actively manageable instrument to reduce net carbon emission from permafrost

    What evidence exists for temporal variability in Arctic terrestrial and freshwater biodiversity throughout the Holocene? A systematic map protocol

    Get PDF
    Background: The Arctic tundra is subject to the greatest climate change-induced temperature rises of any biome. Both terrestrial and freshwater biota are responding to recent climate warming through variability in their distribution, abundance, and richness. However, uncertainty arises within models of future change when considering processes that operate over centennial timescales. A systematic evidence synthesis of centennial-scale variability in biodiversity does not currently exist for the Arctic biome. Here, we sought to address the primary research question: what evidence exists for temporal variability in Arctic terrestrial and freshwater biodiversity throughout the Holocene (11,650 years before present (yBP)-OyBP)? Methods: Consultation with stakeholders informed key definitions, scoping and the appropriateness of the research question. The research question was structured using a PECO framework-Arctic biota (P), a timestamped year in the Holocene (E), another year in the Holocene (C), and the dimensions of biodiversity that have been measured (O)-to inform the search strategy. Search strings were benchmarked against a test list of 100 known sources to ensure a specific and comprehensive return of literature. Searches will occur across 13 bibliographic databases. The eligibility criteria specify that sources must: (a) use 'proxy' methods to measure biodiversity; (b) fall within the spatial extent of the contemporary Arctic tundra biome; and (c) consist of a time-series that overlaps with 11,650yBP to OyBP (1950AD). Information coded from studies will include proxy-specific information to account for both temporal uncertainty (i.e., the characteristics of age-depth models and dating methods) and taxonomic uncertainty (i.e., the samples and processes used for taxonomic identification). We will assess temporal uncertainty within each source by determining the quality of dating methods and measures; this information will be used to harmonise dates onto the IntCa120 calibration curve and determine the available temporal resolution and extent of evidence through space. Key outputs of this systematic map will be: (1) a graph database containing the spatial-temporal properties of each study dataset with taxonomic harmonisation; and (2) a geographical map of the evidence base.Peer reviewe
    • 

    corecore